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The error minimization technique with application to 
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The error minimization technique is introduced as a method of obtaining the 
simultaneous solution to a set of partial differential equations. Because this 
numerical technique is at worst neutrally stable, i t  is believed to have funda- 
mental advantages over existing techniques. The method is formulated in 
general for the steady fluid dynamic conservation equations and then applied to 
a specific case of irrotational isentropic flow of a perfect gas through a nozzle. 
Flow-field solutions were found in nozzle contours having a throat radius of 
eurvature as low as 0-5. Comparison between experimental Mach number 
contours and the theoretical solution for a finite inlet nozzle with a conical exit 
is excellent. 

Introduction 
Numerical solutions to the partial differential equations of motion governing 

steady fluid flow have long been of interest. Basically, two methods have been 
advanced. They are: (i) asymptotic time-dependent solutions typified by Lax & 
Wendroff (1960, 1964)) and (ii) relaxation techniques typified by the work of 
Emmons (1944, 1946). The asymptotic time-dependent method integrates the 
unsteady equations of motion forward in time. Introduction of a damping 
mechanism causes the process to converge to the steady-state solution. There are 
stability problems associated with this technique which preclude certain formu- 
lations and also affect the final closure on formulations which are otherwise 
acceptable (Armitage 1967). The relaxation methods are less formalized and 
success is often dependent on the skill, intuition and problem knowledge of the 
practitioner. To achieve a cyclic process which can reduce but not eliminate the 
largest residual before reducing the next largest residual has proved difficult. 
Although matrix inversion techniques can accomplish this, they become 
impractical for multi-variable multi-dimensional problems. The technique 
advanced here, which involves a relaxation process, is believed to have funda- 
mental advantages over existing techniques. 

General formulation 

fluid flow can be written 
I n  their most general form, the conservation equations governing gaseous or 



270 R. J .  Prozun and D. E.  Kooker 

where w = (wl,wz, ...,wk, ...,wK). 

The wk are the dependent fluid flow variables at a given point and the xf are the 
spatial variables. For a fixed spatial grid system, using finite space derivatives, 
one may write aw, 

~ = Gk(W), (2) at 

where W represents the dependent flow-field quantities over the entire field. The 
right-hand sides of (2) are simply non-linear algebraic functions of the flow 
variables, W. 

Since the steady-state solution is of interest, one may view the left-hand sides 
of ( 2 )  as errors or residuals which exist due to inaccurate knowledge of the flow 
variables, W, influencing the point in question. Hence, let 

&,c = Gk(W). (3) 

Positive definite functions, Pk, of the error, E,, are used to define a local flow-field 

such that gi has the minimum value of zero when all the E~ = 0 a t  the i point. 
A merit function governing the entire flow field under investigation is defined by 

I 

i=l 
g =  zgi, 

where there are K equations in K unknowns governing each point in physical 
space and I grid points necessary to describe the region under investigation. 

The result is a hypersurface g in I. K unknowns. The problem becomes one of 
minimizing the function g by suitably adjusting the independent variables. 
Since the function is known and its gradient may be computed, a gradient 
technique seems most attractive as a means of performing the minimization. For 
the investigations described in this paper, a fmt-order scheme was used. Although 
more sophisticated techniques (Fletcher & Powell 1963) are available, there is 
no guarantee that the added complications are worth the effort for this type of 
problem. 

From the calculus, dg = vg . dW, (6) 

where W = W,i,+W,i,+ ... + W,i,, 

ag . ag . ag * vg = -11+-1,+ ... +--lJ. awl aw, aw, 
The maximum change in g results (for a given IdWl) when dW is parallel to Vg. 
Thus 

dW=- IdWI. (7) 

The desired change or payoff in g is 
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where the index 1 denotes a point on the hypersurface g. Rewriting (6), 
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Equation (9) may be recognized as a multidimensional Newton-Raphson 
recursive formula and is generally referred to as steepest descent. 

In  arriving at the above relation, a first-order expansion is implied which will 
locate the desired solution in one step if the surface is a hyperplane. Further, it 
is reasonable to expect that the above recursion formula for given step might 
increase the value of g, depending on the nature of the function. To eliminate 
this possibility, the length of the step is modified by introducing a multiplier on 
the correction term, i.e. 1 

Wlf' = w1- ( e2) 6. 

Any time during the solution that g2+l > 91, the value of 6 is reduced from its 
current value. Provisions for increasing 6 may also be provided in the event that 
this is desired. Due to the control on 6, the above procedure is at  worst neutrally 
stable. Moreover, the neutral stability condition can only occur when, in the 
limit as &-to, the gradient is incorrect due to computational inaccuracies or 
when a local minimum has been reached. 

Transonic nozzle solution 

In  order to explore the economic feasibility of the method and to determine if 
local minima exist, the transonic flow field in an axisymmetric nozzle was 
chosen as an initial problem. The flow is assumed to be ideal, isentropic and 
isoenergetic. Under these conditions, only two equations and the point thermo- 
dynamic functions are required to completely specify the flow conditions at 
a point. The governing conservation equations are 

(11 a,b) aa aii 
a2 a?) 8 =-- -  

where ii and v" are the non-dimensional axial and radial velocities (scaled by a,, 
the stagnation speed of sound), 2 and ? are the axial and radial co-ordinates, p is 
the non-dimensional density scaled by the stagnation value of density p, and 
subscripts s and p indicate the momentum equation and continuity equation 
respectively. With the familiar relation of density as an isentropic function of 
velocity, the solution is dependent only on ii and v" for a given nozzle wall contour 
R = R(2).  

Reasons of convenience, resolution and proper emphasis suggest the applica- 
tion of several transformations to these conservation equations. First, to achieve 
a centred orthogonal grid which includes the nozzle wall and the axis of sym- 
metry as natural boundaries, let 

r = ?/R(Z), x = 2. (12) 



272 R. J .  Prozan and D. E. Kooker 

One of the boundary conditions which must be satisfied a t  the nozzle wall, r = 1, 
demands that the velocity vector be parallel to the wall. An expedient way to 
ensure this is to transform v" as 

v" = R~+?pii, (13) 

where 
a2e 

p=-R.  
d b  

Then, u = 0 when r = 0 and r = 1. 
The flow field in the throat region of the nozzle is characterized by steep 

gradients and rapidly changing properties compared to the rest of the flow field. 
Thus, to emphasize the throat region while maintaining communication with the 
regions near the exit and entrance planes, let 

x = K ,  tan (&r[). (14) 

Redefining axial velocity, .ii = Lxu, (15) 

where a = dx /d[  and u = d[/dt.  

Equation ( 1  4) maps the interval [ -03 6 x < 001 into [- 1 < [ 6 11 which will 
enable the one-dimensional velocity profile (normally assumed a t  some upstream 
station in i~ finite inlet area nozzle) to be moved to  x = - 03. I n  the throat region 
along the radial direction, the flow is changing much more rapidly near the 
nozzle wall than near the centre line. Thus, to  emphasize the nozzle wall region 
while maintaining communication with the centreline region, let 

r = sin (in$). (16) 

Redefining radial velocity 2, = u*/w, (17 )  

where v* = d$/dt and w = d$/dr. 

Thus, a uniformly space grid mesh system in the ([, $) plane places the proper 
emphasis on and lends accuracy to the rapidly changing regions in the physical 
2, F plane. 

The conservation equations (11)  in terms of u, u*, 5 and y? become 

where F = Rv*/w+uprRu, 
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and K = (daldf;)/a, h = (dwId$)/w, v = 1 -I( 2 y -  1 )  ( E 2 + G 2 ) ,  

where y is the isentropic exponent, and p' = dp/d2. 
A centred three-point differencing scheme was used to form a finite difference 

analogue for the partial derivatives. After substitution of these approximations 
for the derivatives into (18), the merit function, g, for this axisymmetric flow 

where I ,  and J, are the number of axial and radial grid points, respectively. 
Theoretically the choice of the positive definite functions is arbitrary. In practice, 
however, it is reasonable to expect that some functions will behave better, in the 
computational sense, than others. Equation (19) represents the definition used 
in this study and is not intended to infer that this is the only or even the best 
definition. Having made such a definition the components of the gradient of the 
hypersurface g can easily be computed by differentiating (19) with respect to 
each of the independent variables. 

For the present application, the vector W in the general recursion relationship 
[equation (lo)] is the sum of two independent vectors, u and v*. Singling out one 
component of the u vector, the recursion relation for this i, j point becomes 

An analogous expression can be written for v z  components. The step on the error 
surface from I to I +  1 is accomplished by first evaluating (20) for uij and its 
analogy for vz at every flow-field point. Then, all u's and v*'s are simultaneously 
adjusted to their I + 1 values, assuming 6 was such that g'+l < gl. 

The boundary conditions on the equations are imposed by use of the gradients 
of the error surface. Since the transformed radial velocity v* is zero on the nozzle 
wall and centreline, 

91 = 0. (21) 
av* p l , o  

No explicit boundary condition exists for the axial component of velocity at 
@ = 1 , O  in an inviscid analysis. The gradient of the error surface has a component 
[dg'ldu] I+.=' o ,  but the solution proved to be sluggish and unresponsive when this 
was used as a boundary condition. Instead, the component [dg'/du]I+,=l,, was 
found from an extrapolation of the values at  the two adjacent radial points. The 
value at  the nozzle wall was a linear extrapolation of the two lower adjacent 
points and the centreline value was a symmetric extrapolation of the two upper 
adjacent points. Boundary conditions at  the entrance and exit place were found 
from source and sink flow assumptions, respectively. These values were not 
altered as the solution progressed and therefore at  ( = - 1 and ( = + 1 

18 

- 0. dg' dg' 
du - dv* 
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Results 
To demonstrate the capability of the method to handle flow fields in nozzle 

contours having a wide range of R,,IR,, where R, is nozzle throat radius and R,, 
the radius of curvature of nozzle contour in the throat, several runs were made 
with the axisymmetric hyperbolic contour, 

R = [1+ bZ2]9. (23) 

,I 
b = 2.0 

Hyperbolic contour R=[l +@I* 

0.6 0.8 1.0 1.2 1.4 

Mach number 

FIGURE 1. Mach number profile in physical throat for axisymmetrio 
hyperbolic nozzle contours. 

The three cases shown in figure 1 illustrate the Mach number profile in the 
physical throat for values of R,,/R, equal to 5.0, 2.0 and 0.5. These solutions were 
smooth and well behaved throughout the nozzle. The flow field was generated 
with 21 axial stations between 6 = - 1.0 and + 1.0 and 11 radial stations between 
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$ = 0 and + 1.0. The even more extreme case of R,,/R, = 0.2 has also been 
investigated but has shown the need for a greater number of mesh points and 
a longer time to relax to the final solution. The relaxation time may be reduced 
with a minimization technique more efficient than steepest descent. 

3.0 

2.5 

g 2.0 

1-5 

z 1.0 

Q 

3 

0.5 

0 1.0 2.0 ' 3.0 4.0 5.0 
Axial station (in.) 

FIGURE 2. Comparison between error minimization solution and JPL data for nozzle wall 
and centreline Mach number distributions. A, nozzle wall measurement; A ,  nozzle mall 
prediction; , nozzle centreline measurement; 0, nozzle centreline prediction. 

2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 

Axial distance from nozzle inlet (in.) 

FIGURE 3. Comparison between experimental and theoretical Mach number 
contours in throat region of the JPL nozzle. 

A nozzle contour with a finite area inlet and 15" conical exit using cold air as 
the flow medium has been analyzed experimentally by Jet Propulsion Laboratory 
(JPL) personnel. Back et al. (1965) and Cuffel et al. (1969) extensively surveyed 
the transonic region with probes and static pressure taps to determine the Mach 
number profiles. A theoretical analysis was made for this nozzle using the pre- 
vious 231 gridpoint system and an assumption of uniform one-dimensional 
inlet flow at 6 = - 1.0. The resulting distributions of Mach number along the 

18-2 
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nozzle wall and the centreline from this solution are compared to experimental 
data in figure 2. Pigure 3 shows the comparison between six constant Mach 
contours determined from the analysis and the experimental survey data in the 
transonic region. The agreement is excellent. Typical run times on an IBM 7094 
digital computer for these flow fields are between 5 and 10 min. 

Flow angle 

V I  I d  I I I 1 1  1 1  I I I I I I 
0 2 4 6 8 10 12 14 16 

Flow angle (degrees) 
I I I I I I I I I 

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 
Mach number 

FIGURE 4. Theoretical Mach number and flow angle distribution in the 
JPL nozzle a t  axial station = 2.872. 

shock 

3.0 4.0 5.0 6.0 7.0 
Axial station (in.) 

FIGURE 5. Mach number distribution on nozzle wall and centreline from method-of- 
characteristics as compared to the JPL data in the supersonic conical exit region. A, nozzle 
wall measurement ; b,, nozzle wall prediction ; 0 ,  nozzle centreline measurement; 0, nozzle 
centreline prediction; ---- , method-of-characteristics solution. 

One of the important uses of a transonic solution has been to provide accurate 
starting information for a method-of-characteristics solution in the supersonic 
region. A method-of-characteristics solution may be superior to any finite differ- 
ence solution in this region because of its natural ability to treat shock waves as 
an interior boundary condition. Figure 4 presents a supersonic Mach nurnber 
profile and the associated flow angle distribution for the 6 = + 0.3 station 
which was used as a ‘start’ line for the method of characteristics. In addition 
to the smooth Mach number distribution, the flow angle distributioii 
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is exceptionally smooth, which is not necessarily characteristic of finite difference 
solutions. The results of this method-of-characteristics solution of the supersonic 
portion of the nozzle flow field are shown in figure 5. It can be seen that the 
predicted nozzle shock wave intersects the centreline at the location indicated 
by the experimental data. 

Conclusions 
A method to obtain the simultaneous solution of a set of partial differential 

equations, called the error minimization technique, was formulated in general 
and applied to the specific case of isentropic, irrotational flow of an ideal gas 
through a nozzle. The technique has several inherent and highly desirable 
advantages: (i) the relaxation process is, at  worst, neutrally stable; (ii) until 
6-t 0, each step necessarily improves the overall solution; (iii) after the initial 
steps, the error is spread nearly uniformly over the entire flow field. The transonic 
flow-field analysis uncovered no local minima associated with the hypersurface, g. 

Results obtained for the isentropic transonic flow problem are very 
encouraging. The solutions for axisymmetric hyperbolic contours with R,/R, a.s 
low as 0.5 are smooth and well behaved. The solutions show excellent agreement 
with experimental data for a finite area inlet nozzle with a conical exit. The 
solution can provide smooth input data for a supersonic method-of-characteristics 
calculation. Some problems still remain in relaxing the end regions for severe 
nozzle contours, but a greater number of grid mesh points may eliminate this. 

The error minimization technique has been shown to be a feasible method of 
solving complex mixed-flow problems in gas dynamics. Within the general 
formulation is the capability to solve the full Navier-Stokes equations for 
a viscous, heat-conducting fluid. 

This work was supported by the NASA-Marshall Space Flight Center under 
Contract NAS 8-20082. 
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